August 02 2018 | 0 Comments | 65 reads Average Rating: 3

6 Ways Your Health Plan Can Turn Data Mining into a Powerful Overpayment Recovery Tool

by Lalithya Yerramilli in Payment Integrity

Like other consumers, health insurers don’t enjoy feeling the pain that comes with the realization that you’ve paid too much for something. As such, they are known to employ a variety of strategies as part of their overpayment recovery programs.

Data mining is one such tactic. The challenge, however, rests in getting the most out of data mining. For too many health plans, data mining programs have grown stale since they were last updated. To keep this critical part of a payment integrity program up-to-date and maximize the overpayments it finds, your health plan needs to:

#1: Continually innovate. For example, you can move toward longitudinal data mining. With traditional data mining, claims are reviewed one-by-one whereas longitudinal data mining uses past claims behavior to inform the present analysis and identify data mining trends. As such, you can identify rare error patterns that might otherwise go unnoticed.

#2: Utilize “care transition analysis.” Such applications uncover overpayments that occur as members move between sites of care. The ability to link and track claims from site to site enables health plans to uncover questionable coding and billing patterns such as inappropriate referrals or when hospitals and skilled nursing facilities both bill for the same rehabilitative care.

#3: Leverage knowledge to proactively fix issues. Because longitudinal data mining uncovers previously unknown patterns, health plans can use this information along with benchmark trends to identify and fix issues that have been uncovered. For many plans, this is a pragmatic first step toward reducing waste and preventing overpayments from occurring in the first place.

#4: Seek to stop overpayments before they happen. Longitudinal data mining can also be applied as a prepayment or behavior modification solution, which would prevent payment errors.

#5: Add custom content development into the mix. By integrating custom concept development, you can achieve far more accurate results — higher than 95% — and a more favorable ROI. The key is to start with standard queries and then build in customization to ensure any overpayments identified are actionable. As such, you can zero in on overpayments that your plan can realistically collect on.

#6: Employ a hybrid approach. Such an approach builds on data mining to maximize the crossover between human intellect and machine learning. The next generation of hybrid analytics involves machine learning, in which models are trained to understand the data. As data models are optimized, additional patterns and insight emerge, and then those insights feed back into further optimization. As models are refined and scaled up, overpayment recovery and root cause analysis both gain efficiency.

By fine-tuning your data mining efforts, your health plan can increase recoveries without a corresponding increase in provider abrasion. This blog was adapted from “How longitudinal analysis can boost payment integrity programs,” an article that previously appeared in SmartBrief.

Rate this Article:

Rating: 
Average: 3 (1 vote)

Author
Lalithya Yerramilli
Vice President, Analytics

Lalithya Yerramilli has 15 years of experience in analytics in insurance, healthcare, and life sciences industries working with customer info-base, transactional, physician level, patient level, claims and longitudinal datasets.

Read full profile and other posts

Log in to post comments

SEARCH BLOG

OUR THOUGHT LEADERS

Arun Rangamani
SVP, Care Optimization and SCIOXpert Services


Ben Steverman
Chief Technology Officer


Bob Abrahamson
Vice President, Product Management


David Hom
Chief Evangelist


Dr. Kevin Keck
Chief Medical Officer


Jen Cressman
Vice President, Professional Services


John Pagliuca
Vice President, Life Sciences


Jonathan Niloff, MD (Guest Author)
President, Niloff Healthcare Strategies, LLC


Lalithya Yerramilli
Vice President, Analytics


Lesli Adams, MPA (Guest Author)
Director of Population Health Strategy, Oracle Corporation


Leslie Strader
Project Manager


Linda Pantovic (Guest Author)
Director of Compliance & Risk Adjustment, Scripps Health Plan Services


Mark Feeney
Life Sciences Consultant


Monique Pierce
Vice President, Business Optimization


Nayfe Faillace
Chief Compliance & Privacy Officer


Nicole Cormier
Senior Manager, Home Health


Priyanka Rajkumar
VP - SCIOXpert and Solutions, Analytics


Rachel Hall
Senior Business Analyst


Rena Bielinski
SVP, Strategic Accounts


Rodger Smith
SVP, Payment Integrity


Rose Higgins
President, North America


Subha Vaidyanathan
VP, Technology and Data Management


Taryn Bevilacqua
Compliance Director


Tom Peterson
SVP, Risk Adjustment


ARCHIVES

Sign up to receive the latest SCIO news & insights, industry updates, event updates and more, right in your inbox.