October 13 2016 | 0 Comments | 137 reads Average Rating: 3

The Other Edge of the Coding Accuracy Sword

by Rodger Smith in Payment Integrity

It’s hard to fit the complexities of a neonate in intensive care into a box. Especially the seven boxes that are available through the legacy diagnosis related group (DRG) classification system developed for Medicare.

The DRGs developed primarily for the elderly simply don’t offer the granularity needed to describe the complex conditions treated and care offered to the most premature babies, who can vary materially in their acuity and risk. The same was true in other areas, particularly for demographics different than Medicare, particularly the poor, who rely on Medicaid for their care. Medical professionals pointed out for years that, because each individual MS-DRG cover such a broad spectrum of patients and care, they don’t really draw distinctions among certain populations, including newborns, with varying levels of risk. They noted that one unintended result is that they received reimbursement that did not align well with the true cost of the care they provided.

Enter All Patient Refined (APR)-DRGs. Instead of just seven “boxes” for newborns, APR-DRGs offer 28. As such, they make it possible for provider organizations to reflect the details of their patients’ needs and risks much more accurately. The good news is they offer plenty of opportunity to get it right – making it possible to code for additional complexity and more accurate reimbursement. On the other edge of the sword, in a cash strapped world of hospitals with declining bed days and nursing shortages that increase staffing costs, they offer plenty of opportunity to get it wrong – paying for a higher level of care than actually rendered.

In this world, health plans need to deploy advanced analytics to ensure that provider organizations are not making the following mistakes:

#1: Failing to reflect lower levels of care as the episode progresses

It is not uncommon for neonatal patients to receive a high level of care initially and make vast improvements as they grow to more natural size and weight. In such circumstances, the baby is typically “stepped” down to less intense care, and possibly even moved to a different unit within the facility. At times, however, providers can neglect to account for this improvement and continue to code as though the higher level of care is still being rendered.

#2: Coding incorrectly based on included conditions

There are times a baby has a certain condition that includes various other things by its very nature. A baby might be small for his gestational age – which the facility correctly reflects in the claim. However, the provider organization may also code for malnutrition. However, small babies by definition have some malnutrition. Unless the infant is malnourished beyond what is typical for the baby’s small size, that code is inaccurate, which is problematic as it can increase the acuity level for the claim.

#3: Confusing testing with treating

Sometimes, a provider might be concerned that a baby could have a certain condition - such as SEPSIS. They appropriately evaluate the patient for the condition through various tests. This is completely normal and appropriate. The problem arises when they code for the condition – even if the tests ruled the condition out. They should only code for the condition if the tests confirm that it is present.

These are some of the inaccuracies that health plans can uncover with analytics. Can you identify any others?

Rate this Article:

Rating: 
Average: 3 (2 votes)

Author
Rodger Smith
SVP, Payment Integrity

Rodger has over 16 years of operational and industry experience in healthcare, handling matters involving provider contracting, claims operations, provider and member dispute resolution, industry regulation, fraud, waste and abuse investigation, and Payment Integrity.

Read full profile and other posts |

Log in to post comments

SEARCH BLOG

OUR THOUGHT LEADERS

Arun Rangamani
SVP, Care Optimization and SCIOXpert Services


Ben Steverman
Chief Technology Officer


Bob Abrahamson
Vice President, Product Management


David Hom
Chief Evangelist


Dr. Kevin Keck
Chief Medical Officer


Jen Cressman
Vice President, Professional Services


John Pagliuca
Vice President, Life Sciences


Jonathan Niloff, MD (Guest Author)
President, Niloff Healthcare Strategies, LLC


Lalithya Yerramilli
Vice President, Analytics


Lesli Adams, MPA (Guest Author)
Director of Population Health Strategy, Oracle Corporation


Leslie Strader
Project Manager


Linda Pantovic (Guest Author)
Director of Compliance & Risk Adjustment, Scripps Health Plan Services


Mark Feeney
Life Sciences Consultant


Monique Pierce
Vice President, Business Optimization


Nayfe Faillace
Chief Compliance & Privacy Officer


Nicole Cormier
Senior Manager, Home Health


Priyanka Rajkumar
VP - SCIOXpert and Solutions, Analytics


Rachel Hall
Senior Business Analyst


Rena Bielinski
SVP, Strategic Accounts


Rodger Smith
SVP, Payment Integrity


Rose Higgins
President, North America


Subha Vaidyanathan
VP, Technology and Data Management


Taryn Bevilacqua
Compliance Director


Tom Peterson
SVP, Risk Adjustment


ARCHIVES

Sign up to receive the latest SCIO news & insights, industry updates, event updates and more, right in your inbox.